

Telecommunications Impact Assessment

STRATEGIC HOUSING DEVELOPMENT
BLACKGLEN ROAD
SANDYFORD
DUBLIN 18
An Bord Pleanála – Submission

15 July 2022

Prepared by
Independent Site Management Limited
Christopher Plockelman
Director

□:christopher@ismireland.com
①:+353 (0)1 905 8800
www.ismireland.com

Table of Contents

DEFINITIONS	3
EXECUTIVE SUMMARY	4
ABOUT THE AUTHOR	5
DEVELOPMENT DESCRIPTION	6
SITE LOCATION/LAYOUT MAP	8
TELECOMMUNICATION CHANNELS	9
FINDINGS	12
APPENDICIES	14
AREA TELECOMMUNICATION ANLAYSIS	
MICROWAVE LINK ANLAYSIS	16
WALK TEST DATA	

DEFINITIONS

Author: Independent Site Management Limited (hereinafter referred to as "ISM")

Planning Body: means An Bord Pleanála (hereinafter referred to as the "Planning Body")

Radio Frequency: means a frequency or band of frequencies in the range 104 to 1011 or 1012 Hz,

of the electromagnetic spectrum suitable for use in telecommunications.

Microwave Links: means the transmission of information by electromagnetic waves with

wavelengths in the microwave range (1 m - 1 mm) of the electromagnetic

spectrum suitable for use in telecommunications.

Telecommunication Channels: means Radio Frequency links & Microwave Transmission links (hereinafter

referred to as "Telecommunication Channels")

Report Date: means the date which the assessment was carried out (hereinafter referred

to as "Report Date")

The Applicant: means Zolbury Limited (hereinafter referred to as the "Applicant")

The Development: means the proposed development situated on a site of c. 3.7 ha at Blackglen

Road and Woodside Road, Sandyford, Dublin 18 (hereinafter referred to as

the "Development")

EXECUTIVE SUMMARY

Independent Site Management ('ISM') has been engaged to provide a telecommunication impact assessment, to assess whether or not the proposal being made by Zolbury Limited (the "Applicant") within its submission to An Bord Pleanála (the 'Planning Body') impacts any Telecommunication Channels ("Telecommunication Channels")

To provide this assessment, ISM reviewed the Applicant's proposed development (the "Development") in the context of the immediate surrounding registered and documented telecommunication sites.

Pursuant to our review, ISM can conclude based on the findings outlined herein that the proposed development does not impact any existing Telecommunication Channels at the time of the assessment.

ABOUT THE AUTHOR

ISM is a consultancy firm and asset management company that provides telecommunication consultancy and services to developers and property owners.

ISM works closely with all providers of wireless and fixed line telecommunication services to bridge their infrastructure requirements with that of private and public development. ISM has successfully been providing this service in Ireland for 20 years.

ISM is a multidiscipline firm proficient in the 3 main areas in the delivery of telecommunication services:

- (1) Radio Frequency technology;
- (2) Microwave Transmission technology; &
- (3) Fixed Line fiber optic & copper technologies.

ISM has had an integral part in procuring, designing, building and subsequently managing over 300 mobile base station and/or fixed wireless sites, the vast majority of which originated in densely populated, urban environments.

ISM has designed built and operates 6 in-building distributed antenna systems, and 2 large area managed fibre optic networks.

DEVELOPMENT DESCRIPTION

Zolbury Limited intend to apply to An Bord Pleanála for planning permission for a Strategic Housing Development on a site of c. 3.7 ha at Blackglen Road and Woodside Road, Sandyford, Dublin 18. The development shall consist of a new residential scheme comprising 360 no. residential units, associated resident amenity facilities and a childcare facility in the form of 9 no. new apartment buildings (A1 – C3) as follows:

- Block A1 (4 storeys) comprising 18 no. apartments (3 no. 1 bed units and 15 no. 2 bed units); a crèche facility
 of approx. 401 sq. m with associated outdoor play space of approx. 20 sq. m; and resident amenity facilities
 of approx. 30 sq. m.
- Block A2 (3-4 storeys) comprising 24 no. apartments (2 no. 1 bed units and 22 no. 2 bed units) and resident amenity facilities of approx. 390m2.
- Blocks B1 and B2 (2-6 storeys) comprising 69 no. apartments (30 no. 1 bed units, 34 no. 2 bed units, 5 no.
 3 bed units).
- Blocks B3 and B4 (2-6 storeys) comprising 62 no. apartments (30 no. 1 bed units, 27 no. 2 bed units and 5 no. 3 bed units).
- Blocks C1, C2 and C3 (3-6 storeys) comprising 187 no. apartments (58 no. 1 bed units, 126 no. 2 bed units and 3 no. 3 bed units); and resident amenity facilities of approx. 187.5 sq. m.

Each residential unit is afforded with associated private open space in the form of a terrace / balcony.

Total Open space (approx. 22,033 sq. m) is proposed in the form of public open space (approx. 17,025 sq. m), and residential communal open space (approx.5,008 sq. m).

Podium level / basement level areas are proposed adjacent to / below Blocks A2, B1, B2, B3, B4, C1, C2 and C3 (approx. 12,733 sq. m GFA). A total of 419 no. car parking spaces (319 no. at podium/basement level and 100 no. at surface level); to include 80 no. electric power points and 26 no. accessible parking spaces); and 970 no. bicycle spaces (740 no. long term and 230 no. short term), and 19 no. Motorcycle spaces are proposed. 10 no. car spaces for creche use are proposed at surface level.

Vehicular/pedestrian and cyclist access to the development will be provided via Blackglen Road to tie in with the Blackglen Road Improvement Scheme. A second access is also proposed via Woodside Road for emergency vehicles, pedestrian and cyclist access only.

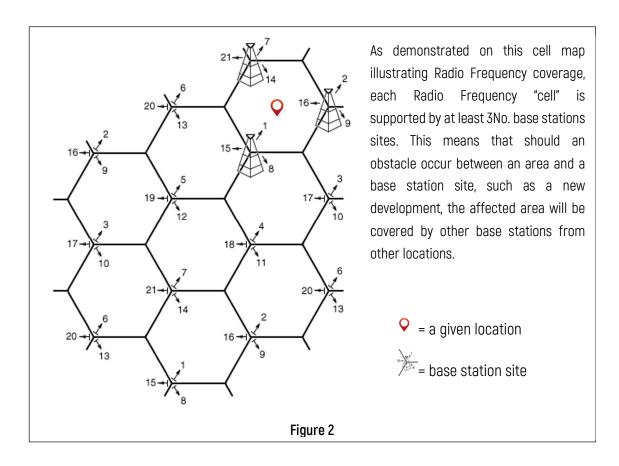
The proposal also provides for Bin Storage areas and 4 No. ESBN substations to supply the development. 3 no. sub-stations shall be integrated within the building structures of Blocks B and Blocks C. In addition, one Substation shall be classed as a unit sub-station mounted externally on a dedicated plinth.

The associated site and infrastructural works include provision for water services; foul and surface water drainage and connections; attenuation proposals; permeable paving; all landscaping works; green roofs; boundary treatment; internal roads and footpaths; electrical services; and all associated site development works.

SITE LOCATION/LAYOUT MAP

TELECOMMUNICATION CHANNELS

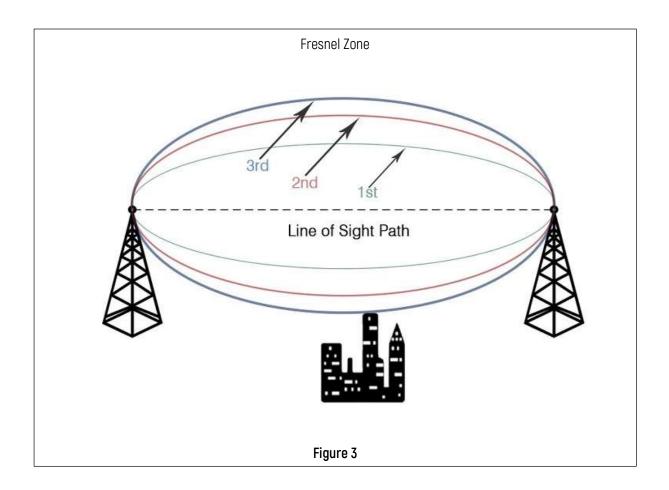
This report assessed the two wireless Telecommunication Channels or networks of Telecommunication Channels that may be affected by the height and scale of a new development, Radio Frequency links & Microwave Transmission links


Radio Frequency links & Microwave Transmission Links are used in Ireland's mobile phone and fixed wireless networks and disseminate at an average above ground level height of 20m, making them the most relevant Telecommunication Channels to be assessed in relation to the height and scale of a new development and to that end what allowance the Applicant needs to make for their retention.

Mobile phones send and receive signals via links from nearby antenna sites or cellular towers, technically known as base stations, using Radio Frequency waves. Microwave Transmission links use microwave dishes to "transmit" from these base stations to other base stations forming a network. Radio Frequency waves operate at a lower power within lower frequencies of the radio spectrum, whereas Microwave Transmission operates at higher power within higher frequencies of the radio spectrum.

Radio Frequency waves are distributed over land areas in "cells", each served by at least one fixed-location transceiver (base station), but more normally by three cell sites or base stations. These base stations provide the cell with the network coverage, which can then be used for voice, data, and other types of content. A cell typically uses a different set of frequencies from neighbouring cells to avoid interference and provide guaranteed service quality within each cell.

When joined together, these cells provide Radio Frequency coverage over a wide geographic area (Cellular network). This enables numerous portable transceivers (e.g., mobile phones, tablets and laptops equipped with mobile broadband modems, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission.



Cellular networks offer a number of desirable features, but most notably, additional cell towers can be added indefinitely and are not limited by the horizon, therefore it can be considered **indeterminable** as to whether a new development affects the Radio Frequency coverage of a geographical area which is being served by multiple base stations, not necessarily the closest.

Conversely, Microwave Transmission links are point-to-point links, which are easily determined to be affected, or not, by the height and scale of a new development. In point-to-point wireless communications, it is important for the line of sight between two base stations to be free from any obstruction (terrain, vegetation, <u>buildings</u>, wind farms and a host of other obstructions). As any interference or obstruction in the line of sight can result in a loss of signal.

While installing Microwave links, it is important to keep an elliptical region between the transmitting Microwave link and the receiving Microwave link free from any obstruction for the proper functioning of the system. This 3D elliptical region between the transmit antenna and the receive antenna is called the **Fresnel Zone**. The size of the ellipse is determined by the frequency of operation and the distance between the two sites.

Essentially, if there is an obstacle in the Fresnel zone, part of the radio signal will be diffracted or bent away from the straight-line path. The practical effect is that on a point-to-point Microwave link, referred to herein, the refraction will reduce the amount of energy reaching the receiving microwave dish. The thickness or radius of the Fresnel zone depends on the frequency of the signal – the higher the frequency, the smaller the Fresnel zone. Microwave links are high frequency radio links used for point-to-point transmission.

FINDINGS

ISM's assessment did not identify any Microwave Transmission links that will be impacted by the height and scale of the Development.

Our assessment has not identified any Radio Frequency links that will be impacted by the height and scale of the Development.

ISM carried out a full assessment of neighbouring registered and documented telecommunication sites to assess what Microwave links would be impacted by the height and scale of the Development. Refer to Figure 4 & 5 of the appendices for full analysis. The assessment of Microwave Transmission links entailed both a visual survey of each identified neighbouring telecommunication site within a reasonable geographic proximity to the Development and a request for information from telecommunication providers where the visual survey was inconclusive.

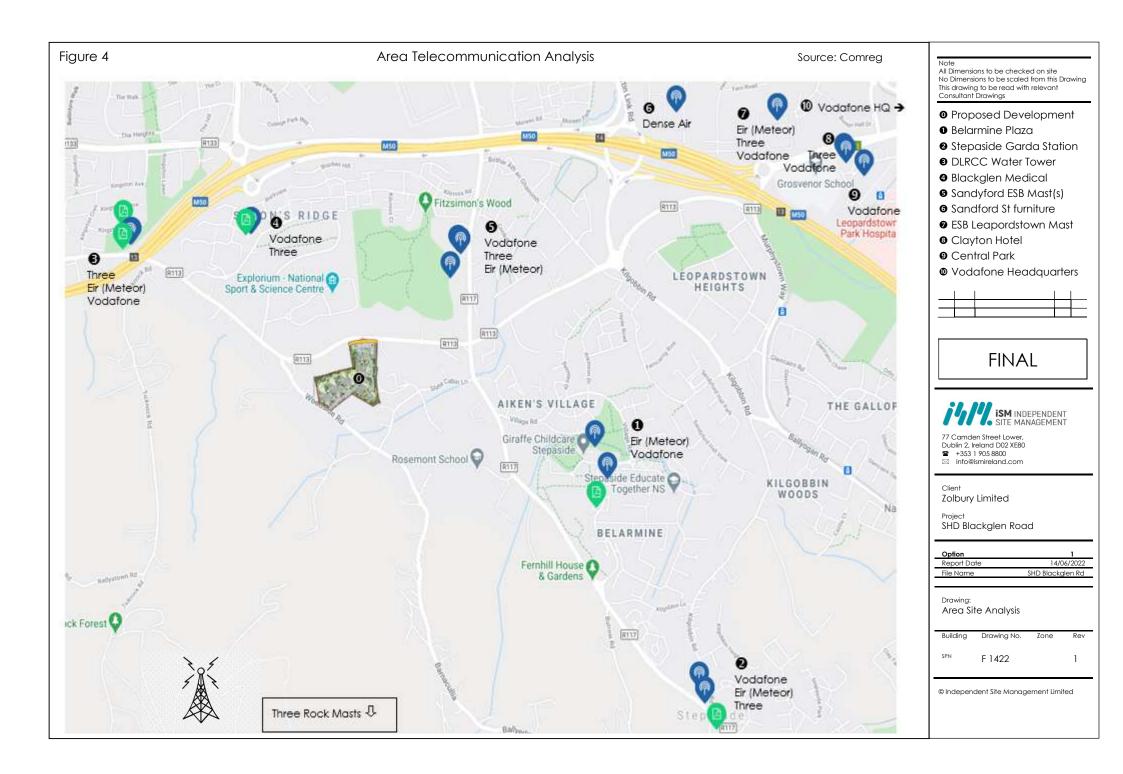
ISM carried out a full assessment of neighbouring registered and documented telecommunication sites to assess what Radio Frequency links might be impacted by the height and scale of the Development. To assess this, we carried out a walk test throughout the surrounding areas to ascertain what cells were serving the street areas to the north, south, east & west of the Development site. Refer to Figure 6 of the appendices for full analysis

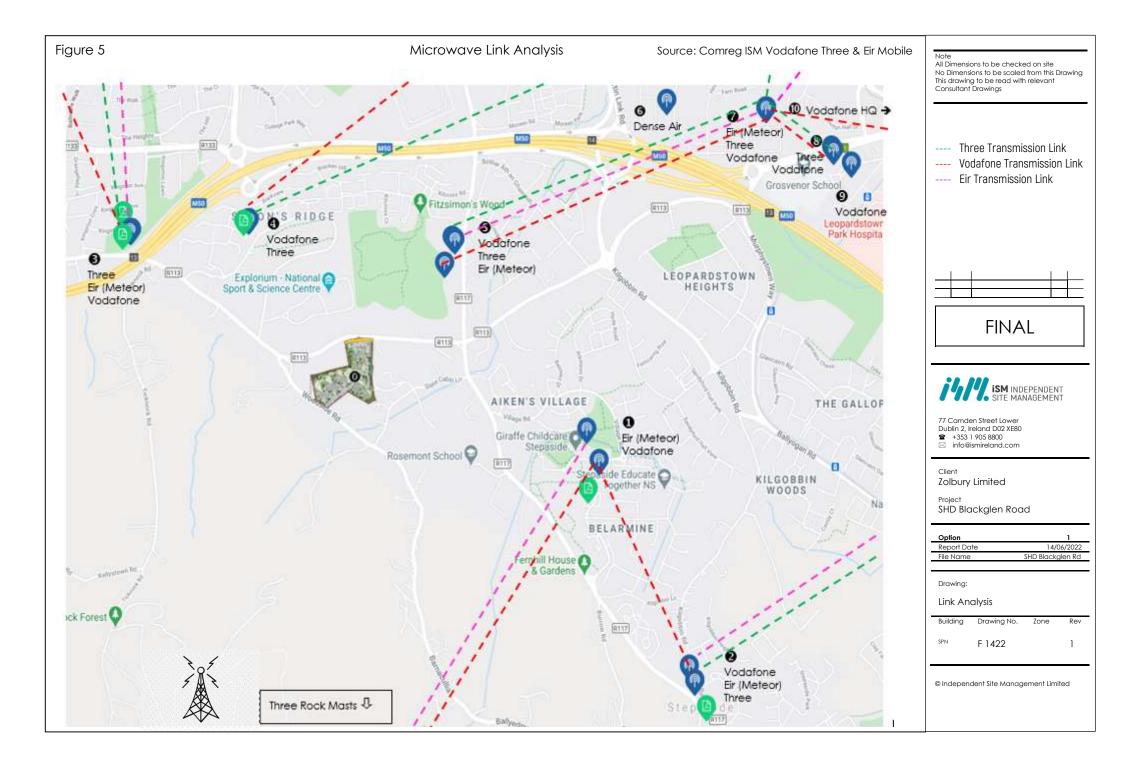
Our assessment identified Radio Frequency coverage for the local geographic area is served by several cells at strategic distances away from the development site on a 360° basis which is typical cell pattern for semi-urban/semi-rural Radio Frequency coverage. The walk test data determined that the lands, residential and public road & amenity areas to the north, south, east & west of the Development are adequately covered by the cell sites identified in figure 6 and are not reliant on Radio Frequency coverage from any one cell that would be obstructed by the Development.

Lastly, we hasten to point out that the Development is in reasonably close proximity to Three Rock mountain, which is home to a significantly high concentration of telecommunications channels, which are predominantly microwave links. We can conclude that the Development will not impact these telecommunication channels as the height and site elevation are well below the above ground level heights of the telecommunication channels emanating from the masts on Three Rock Mountain.

It is therefore our findings that the Development, as of the date of this report, will not impact any telecommunication channels, and foot of these findings, have not made any recommendations that the Applicant implement any mitigation infrastructure at this time.

Please note that telecommunication networks are always evolving, and as such, these findings remain subject to change.


APPENDICIES


Figure 4: Identification of neighbouring registered and document telecommunication sites (Area Telecommunication Analysis)

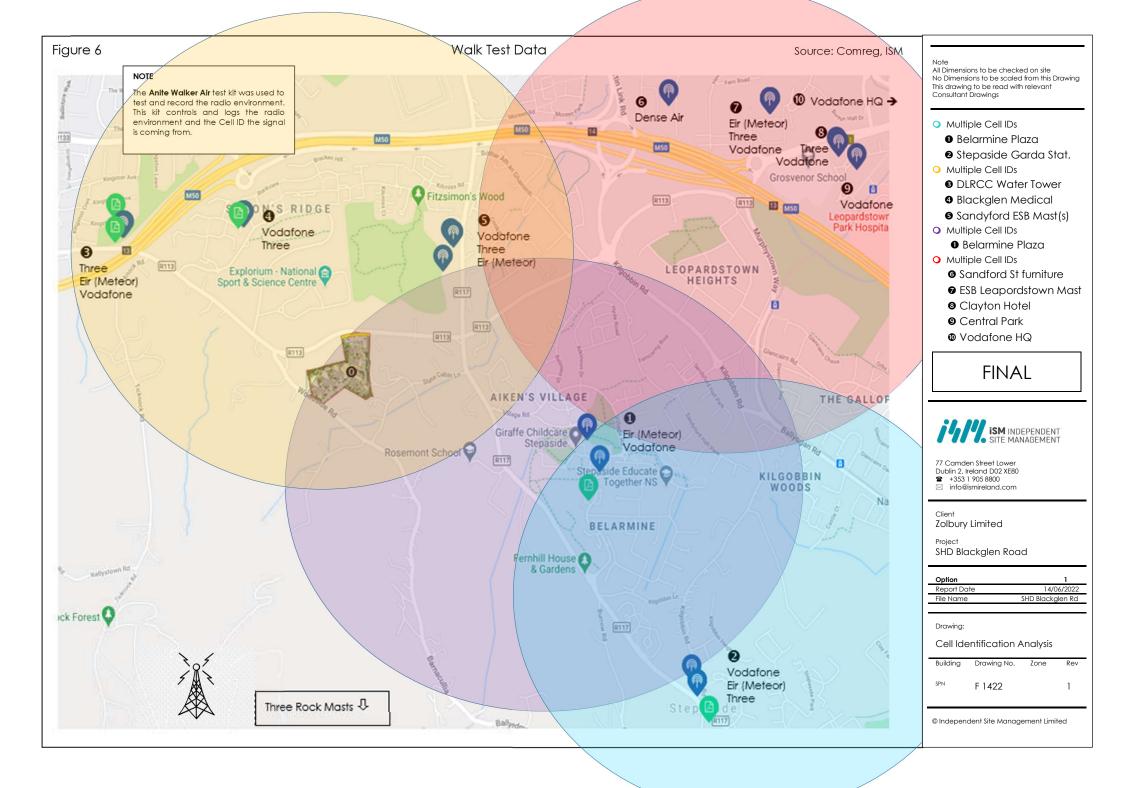

Figure 5: Identification of Microwave links disseminating from neighbouring registered and document telecommunication sites (Microwave Link Analysis)

Figure 6: Identification of local area Cells by Cell ID (Cell Identification Analysis)

